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Abstract. We investigate the scaling properties of the Penna model, which has become a popular tool
for the study of population dynamics and evolutionary problems in recent years. We find that the model
generates a normalised age distribution for which a simple scaling rule is proposed, that is able to reproduce
qualitative features for all genome sizes.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 89.75.Da Systems obeying scaling
laws – 05.10.Ln Monte Carlo methods

1 Introduction

In the last years, the usage of computational models has
turned into a major trend in the discussion of problems
in population dynamics and evolutionary theory. One of
the reasons for this choice is undoubtedly the lack of sub-
stantial amounts of observational data on the dynamics
of such systems; another, is the ability of computational
models in mapping the dynamics of a non-Hamiltonian
system into a set of simple rules of interaction between
the large number of its individual constituents. Simula-
tions of populations evolving under this set of rules serve
as grounding test for the theoretical ideas that inspired
them. The outcome of these simulations can then provide
support for the role played by each particular conjecture,
thus helping the theorist in providing guidelines for her or
his work.

Statistical physicists have pioneered this effort, and
their toolbox has proven its value in a number of differ-
ent problems – see reference [1] for recent reviews. Among
the different models that have been used by physicists in
the field, one stands out for its popularity. The Penna
model [2] owes its leading role to a number of successes,
and has further more managed to attract the attention
of some theoretical biologists [3]. Despite – or perhaps
because of – its simplicity, it has shown enough power
to unravel the key factors involved in such phenomena
as the catastrophic senescence of semelparous species, fe-
male menopause and species branching under ecological
pressure.

In the Penna model, individuals are represented by
their genome, mapped onto one (haploid version) or two
(diploid version) bit-strings. The standard genome used in
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the Penna model is 32-bit long, by no other reason than to
turn it easy to implement on 32-bit word processors. In a
study of the mortality data of the German population with
the Penna model, genomes were represented by 128-bit
long strings [4]. There, it was shown that it is possible to
compare results for two different genome sizes by effecting
a rescaling of some parameters. This result motivated the
search for scaling in general, but a first proposal in this
direction [5] was not conclusive. That computer simulation
used an asexual model with a classical Verhulst factor and
tried to compare directly results with different rescaled
parameters. Another version of the asexual Penna model,
continuous in time and using a real-valued genotype, was
also object of a similar analysis [6], but its results are
not easily mapped onto the usual discrete version. Our
approach, as can be seen in the following, is quite different.

2 A proposal for scaling analysis

We are interested in studying the sensitivity of the
Penna model for diploid individuals, that use sex for re-
production, with respect to the number of bits used in the
implementation of the age-structured genetic load, and we
focus on the analysis of the age distribution of the popu-
lation.

In the Penna model, each position (locus) of the
genome may contain a bit set to 1 (harmful allele) or 0.
The passage of time in an individual’s life triggers the
activation of one further allele in the sequentially read
bit-string. The amount of active harmful alleles deter-
mine the genetic death of the individual when it reaches
some pre-determined threshold value. An individual may
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Fig. 1. Age distribution of the population for a 32, 64, 96,
192 and 224 bits models. The parameter used in the simula-
tions are: the Verhulst parameter (400000), the initial popula-
tion (1000), the minimum reproduction age (8), the number of
offspring per mating season (4), the threshold value for harm-
ful diseases (3), the number of mutations added at birth per
bit string (1) and the number of dominant loci (6). We have
averaged over the last 1000 steps of 10 different realisations in
each case, after all distributions could be confidently consid-
ered as stationary (simulations end after between 50 000 and
200 000 steps, depending on the size of the bit strings).

also die because of intra-specific competition for resources
of the environment, and this is usually represented by a
density-dependent mean-field death probability, called the
Verhulst factor. A Fortran code that simulates the model,
and was the basis for our own simulations, can be found in
reference [7]. Because the genome is age-structured, from
a physical point of view we are studying the properties of
the model’s temporal scaling. The biological aspect of our
analysis is to provide an answer to the question whether
the model shows dependence on the genome size.

As a first step, we have looked for the model version
more suited to the analysis and chose a variation of the
version with a Verhulst factor that operates only on the
first time step of an individual’s life [8]. Since this usage
of the Verhulst factor is equivalent to setting the repro-
duction probability dependent on the population size, we
made it explicitly by letting a female give birth with a
probability given by 1 minus the Verhulst factor. With
this choice, we are able to control the population in a way
that is not dependent on the genome length, due to the
fact that a living individual never feels the effect of an ex-
ternal death factor. In the version with the usual Verhulst
strategy, each living individual has a yearly probability
to die, and the effective non-genetic death probability is
trivially dependent on the genome size.

In Figure 1 we show the age distribution of the popula-
tion for various simulations of the model, differing by the
number of bits in the genome. In the figure we are showing
just the normalised values of the age distributions, forget-
ting the fact that the population grows with genomes’

Table 1. Coefficients c and d obtained from regressions of the
integral function, for i = 1 and several values of j.

j 2 3 6 7
c 1.53 2.02 3.45 3.83
d 0.51 1.06 2.58 3.12

elongation. The first model uses a string of 32 bits. Be-
cause 32 is a natural unit for these computational studies
running on 32-bit word processors, the other bit strings
are chosen with sizes multiple of this number: 64, 96, 192
and 224 bits. In all the simulations performed, the param-
eters that control the number of dominant loci, the age
at which reproduction starts, the number of offspring and
mutations in each generation, and the threshold of harmful
mutations are exactly the same. It is also relevant to notice
that the cross-over frequency during gamete production is
always one in each of these simulations. The end of repro-
duction age is different for each genome length, in each
case set to correspond to the maximum allowable age of
the individuals (32, 64, 96, 192 or 224). In fact, our simu-
lation conditions permit autosustaining populations that
at equilibrium are not very sensitive to a change of this
parameter. So, our choice does not introduce any undesir-
able asymmetry.

We can see that the distributions, although qualita-
tively similar, undergo a visible differentiation. We were
led by their aspect to look for a scaling law that gives a
relation between two different ages (t1 and t2) at which
the integral of two distributions corresponding to differ-
ent genome sizes (ρ1(t) and ρ2(t)) reach the same popu-
lation value. Formally, we search for a temporal rescaling
t2 = F (t1) that solves the equation

∫ t1

0

dx ρ1(x) =
∫ t2

0

dx ρ2(x). (1)

The solution turns out to be a very simple linear re-
lation. In all cases, the integral of the distribution, as a
function of its upper limit, starts with a linear growth,
at ages where the distribution is essentially constant, and
ends with a saturation, at the end of the lifespan of the
population. This behaviour suggests that a linear relation
between the time values may satisfy the integral equality:
if yi = a(i) + b(i)ti is a regression of the linear part of the
integral function of the distribution ρi(t), yi = yj leads to
the relation we are looking for:

tj = (b(i)/b(j))ti+
(

a(i) − a(j)
b(j)

)
= c(i, j)ti+d(i, j). (2)

Each index, i or j, is defined as the bit string size
divided by 32. We can determine the coefficients of this
rescaling relation by performing the regression of each in-
tegral function and using the above derived formulae to
compute c(i, j) and d(i, j). For simplicity of notation, we
omit the first index if it is equal to 1. Table 1 shows results
for these coefficients for some values of j and for i = 1.

These simple transformation relations allow both a
proper rescaling of the full integral functions, and not
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Fig. 2. By transforming the time scale of the distributions for
genome sizes that are multiples of 32 using the inverse of the
transformations with coefficients given in Table 1, and then
normalising them, it is possible to approach the 32-bits simu-
lation from any of the others.

only of its linear part, and also a rescaling of the age dis-
tributions. In fact, if we perform the inverse of the time
transformations with the coefficients in Table 1 and then
renormalise the rescaled functions, we obtain results that
are close to the 32-bits distribution from all the others
(see Fig. 2).

From the coefficients listed in Table 1 it is possible to
suggest a simple approximation for the slopes of the time
rescaling transformations:

c(j) � [1 + 0.5(j − 1)]. (3)

These coefficients are physically related to the model’s
temporal scaling, as already pointed out. A similar rela-
tion also holds for the terms d(j), which are obtained as a
difference between the constant terms of the regressions of
the integral functions rescaled by a slope, and thus depend
on the values of the age distributions at zero age.

We now compare the mortality functions, derived from
the age distributions by the equation

f(a) = log(ρ(a)/ρ(a + 1)), (4)

where ρ(a) is the value of the distribution at age a.
In Figure 3 these functions are plotted, after having

rescaled the age distributions. In a linear scale, these func-
tions appear to collapse for young ages, and they diverge
clearly at the large age end. The inset, on a log-linear
scale, shows that the mortality functions have the same
general behaviour in the small age interval shown, but the
plot shows an increasing separation between the smaller
and larger genomes. The collapse is not fully obtained, as
can be seen with the help of the error bars shown.

The slope of the scaling transformation is obviously
strongly dependent on the values of the simulation pa-
rameters. Of particular interest is a choice of these pa-
rameters that leads to a unit slope. In this case, we may
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Fig. 3. The mortality functions computed from the rescaled
age distributions (Fig. 2). The inset shows the same functions
in a semi-logarithm scale, for ages up to 15. Typical error bars
are shown for three of the points.
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Fig. 4. The different simulations when the number of muta-
tions and dominant loci are renormalised depending on the
string size to keep constant their density in the genomes. All
the simulations have a duration of 50 000 Monte Carlo steps.

recover the solution of the 32-bits model from the oth-
ers just by rescaling those parameters, which amounts to
performing a renormalisation. To explore this alternate
path, we have focused our attention on just two of the
parameters, namely the number of dominant loci for the
harmful allele and the number of mutations added in each
generation. The guideline here was to keep constant the
density of mutations and dominant loci in the genomes,
independently of their size. We only need to multiply the
original values of these parameters in the 32-bits model
by i, the genome size divided by 32. The results of this
renormalisation procedure are shown in Figure 4.
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3 Conclusion

From the results of our numerical simulations it emerges
that, given a Penna model with a Verhulst factor acting a
single time in each individual’s life, the scaling laws:

32 −→ N = 32j

t −→ [1 + 0.5(j − 1)]t + [0.5(j − 1)]

ρ −→ [1 + 0.5(j − 1)]−1ρ

where N is the number of bits in the genome and j an
integer, lead to age distribution functions (ρ = ρ(t)) that
have similar behaviours, although they do not agree quan-
titatively for all genome sizes. This fact allows one to use
any genome size in a simulation, if only qualitative fea-
tures are focused, from which the age distribution for all
other sizes can be roughly derived. It is also known that
the situation is no more clearer if the threshold for harmful
mutations is scaled in proportion to the genome size [9].

As a final comment, our results seem to indicate that
the onset of ageing, usually considered as coincident with
the minimum reproduction age, is now, for large genomes,
deferred. The age distributions do show a decreasing
trend, starting close to the onset of reproduction, but they
have very small derivatives – reflected on the plateau at
small ages for the mortality functions. The lifespan of the
population increases linearly with genome size, as opposed
to being strongly dependent only on the minimum re-
production age. The latter prediction is usually considered

to be a trivial consequence of the mutation accumulation
theory on which the Penna model is based. These results
are somewhat intriguing and deserve further investigation.
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